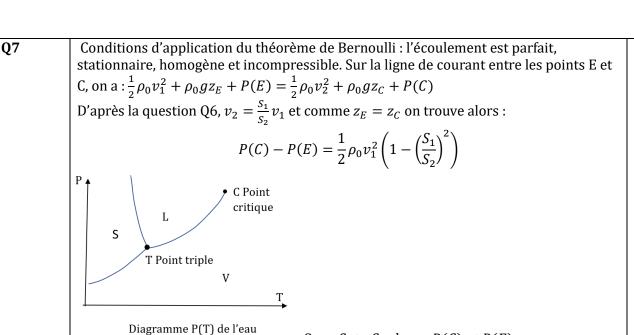
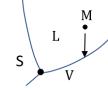
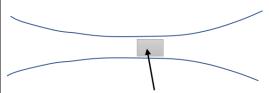
0	
Questions	Réponses
Q1	Le long de l'axe (Ox) par exemple, les forces de pression sont : $d\vec{F}_{axe\;(Ox)} = p(x,y,z) dy dz \vec{e}_x - p(x+dx,y,z) dy dz \vec{e}_x = -\frac{\partial p}{\partial x} dx dy dz \vec{e}_x$
	Le même raisonnement sur les deux autres axes conduit à : $d\vec{F} = -\left(\frac{\partial p}{\partial x}\vec{e}_x + \frac{\partial p}{\partial y}\vec{e}_y + \frac{\partial p}{\partial z}\vec{e}_z\right)dxdydz = -\overrightarrow{grad}pd\tau \text{ d'où l'expression de l'équivalent}$ volumique des forces de pression : $\vec{F}_V = -\overrightarrow{grad}p$
	Volumique des forces de pression : $r_{V} = -graup$
Q2	Expression de la force volumique de pesanteur : $\vec{f}_V = \rho_0 \vec{g}$ L'équation de l'hydrostatique est donc : $\vec{F}_V + \vec{f}_V = \vec{0}$ soit : $\rho_0 \vec{g} - \overline{grad}p = \vec{0}$
Q3	Pour l'axe (Oz) vertical orienté vers le bas et l'origine O au niveau de la surface, la pression ne dépendant que de z, la projection de l'équation de l'hydrostatique donne : $\rho_0 g - \frac{dp}{dz} = 0 \text{ soit, puisque } p(0) = P_0: \qquad p(z) = \rho_0 gz + P_0$
Q4	Expression de la poussée d'Archimède : $\vec{F}_a = -\rho_0 \pi R^2 L g \vec{e}_z$ C'est la résultante des forces de pression sur le sous-marin modélisé ici en cylindre.
Q5	Les ballasts (figure 3) sont des cavités situées principalement entre les coques épaisse et mince. Ils peuvent être plus ou moins remplis d'eau ou d'air, faisant ainsi varier le volume du sous-marin et donc la poussée d'Archimède qui compensera plus ou moins le poids du submersible. Sur les surfaces interne et externe de la coque mince (fig 3), les forces de pression de l'eau se compensent ; par contre, la coque épaisse est soumise à la pression de l'eau à l'extérieur et à la pression atmosphérique à l'intérieur, elle doit donc pouvoir supporter cette différence de pression. $\Delta p = p(z_C) - P_0 \cong 29 \cdot 10^5 \text{ Pa}.$ $\Delta p_{\acute{e}nonc\acute{e}} = \frac{mg}{s} = \frac{100 \times 9,8}{(10^{-3})^2} = 98 \cdot 10^7 \text{ Pa} > \Delta p. \text{ Donc tout va bien, le sous-marin n'implose pas !}$ (Autre réponse possible : $\Delta p = \frac{mg}{s} \text{ soit } m = \frac{s\Delta p}{g} = \frac{(10^{-3})^2 \times 29 \cdot 10^5}{9.8} = 0,30 \text{ kg qui est bien}$
	inférieure à 100 kg.)
Q6	L'écoulement est incompressible, le débit volumique se conserve : $v_1S_1=v_2S_2$



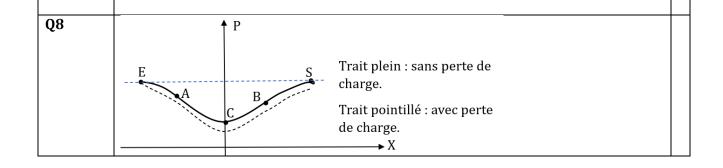
Or
$$S_1 > S_2$$
 donc $P(C) < P(E)$.



Entre les points E et C, la pression diminue ; un point M de cette ligne de courant, pour une température donnée, verra sa pression diminuer jusqu'à éventuellement la pression de vapeur saturante $P_{Sat}(T)$ où une bulle de vapeur peut se former.

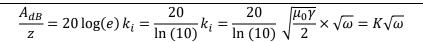


Zone d'apparition possible de bulles de vapeur



Q9	Pour une profondeur donnée, $P(A) = P(B)$ mais $P_{Sat}(T_A) < P_{Sat}(T_B)$ donc la cavitation est plus difficile en A qu'en B: le sous-marin est plus discret en eau froide qu'en eau chaude. $P(H) < P(B) \text{ pour une température } T \text{ donnée, donc les bulles de cavitation apparaissent plus facilement en haut qu'en bas de l'hélice du sous-marin.}$
Q10	La conservation de la masse se traduit par : $div(\rho_0\vec{v}) + \frac{\partial \rho_0}{\partial t} = 0$. L'écoulement est incompressible, donc $div\vec{v} = 0$. L'imperméabilité de la paroi Σ de la bulle de rayon $R(t)$
	permet d'écrire : $v(R(t),t)=v_{\Sigma}=\dot{R}(t)$. Avec les hypothèses de l'énoncé sur le champ de vitesse et le formulaire de l'énoncé on a : $div\vec{v}=\frac{1}{r^2}\frac{\partial(r^2v_r)}{\partial r}=0 \text{ qui donne ici}: r^2v(r,t)=f(t)=R^2(t)\dot{R}(t) \text{ (condition d'imperméabilité) soit}: v(r,t)=\frac{R^2(t)\dot{R}(t)}{r^2}=-\frac{-R^2(t)\frac{dR}{dt}}{r^2}=-\frac{A(t)}{r^2}, \text{ avec}$ $A(t)=-R^2(t)\frac{dR}{dt}$
Q11	Équation d'Euler : $\rho_0 \left(\frac{\partial \vec{v}}{\partial t} + \overrightarrow{(v}.\overrightarrow{grad}) \vec{v} \right) = -\overrightarrow{grad}p$ (pesanteur négligée). En utilisant les hypothèses et le formulaire, on simplifie l'équation d'Euler :
	$\rho_0 \frac{\partial v}{\partial t} + \rho_0 v \frac{\partial v}{\partial r} = -\frac{\partial p}{\partial r}$ Puis: $-\rho_0 \frac{\dot{A}(t)}{r^2} - \rho_0 \frac{A(t)}{r^2} \times \frac{2A(t)}{r^3} = -\frac{\partial p}{\partial r} \text{ et finalement:}$ $\frac{\partial p}{\partial r} = \rho_0 \left(\frac{\dot{A}(t)}{r^2} + \frac{2A^2(t)}{r^5} \right)$
Q12	La durée τ est telle que pendant l'implosion $R(t)$ passe de R_0 à 0 . En posant : $K = \sqrt{\frac{3\rho_0}{2(p_{\infty,0} - p_{sat}(T))}} \text{ et en utilisant la relation donnée dans l'énoncé, on a :}$ $\tau = \int_0^\tau dt = -K \int_{R_0}^0 \frac{dR}{\left[\left(\frac{R_0}{R}\right)^3 - 1\right]^{\frac{1}{2}}} = -K \int_{R_0}^0 \sqrt{\frac{\left(\frac{R}{R_0}\right)^3}{1 - \left(\frac{R}{R_0}\right)^3}} dR. \text{ On pose } u = \frac{R}{R_0} \text{ donc } du = \frac{dR}{R_0} \text{ ainsi}$
	$t = J_0 \ ut = -K J_{R_0} \frac{1}{\left[\left(\frac{R_0}{R}\right)^3 - 1\right]^{\frac{1}{2}}} - K J_{R_0} \sqrt{\frac{1 - \left(\frac{R}{R_0}\right)^3}{1 - \left(\frac{R}{R_0}\right)^3}} \ uK. \text{ On pose } u = \frac{1}{R_0} \text{ donc } uu = \frac{1}{R_0} \text{ donc } u$
	$t=\kappa_0 J\sqrt{2(p_{\infty,0}-p_{sat}(T))}$ L'application numérique donne : $\tau=1.9\cdot 10^{-4}~s~\ll 0.2~s$ durée typique d'évolution visible à l'œil d'une bulle de champagne par exemple. Le phénomène étudié ici est beaucoup plus rapide.

Q13	Les quatre équations de Maxwell pour l'eau de mer : Maxwell-Gauss : $div\vec{E} = \frac{\rho}{c}$	
	Maxwell-Thomson (ou "flux"): $div\vec{B} = 0$	
	Maxwell-Faraday : $\overrightarrow{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t}$	
	Maxwell-Ampère : $\overrightarrow{rot}\overrightarrow{B} = \mu_0 \overrightarrow{J} + \mu_0 \varepsilon \frac{\partial \overrightarrow{E}}{\partial t}$	
	M-A donne : $div(\overrightarrow{rotB}) = 0 = \mu_0 \left[div\overrightarrow{J} + \varepsilon \frac{\partial}{\partial t} (div\overrightarrow{E}) \right] = \mu_0 \left[div\overrightarrow{J} + \varepsilon \frac{\partial (\frac{\rho}{\varepsilon})}{\partial t} \right]$	
	D'où l'équation locale de conservation de la charge : $div\vec{j} + \frac{\partial \rho}{\partial t} = 0$. Comme la loi	
	d'Ohm est ici vérifiée : $\vec{J} = \gamma \vec{E}$, on obtient : $\gamma div\vec{E} + \frac{\partial \rho}{\partial t} = \gamma \frac{\rho}{\varepsilon} + \frac{\partial \rho}{\partial t} = 0$ soit :	
	$\frac{\partial \rho}{\partial t} + \frac{\rho}{\tau_R} = 0$ où : $\tau_R = \frac{\varepsilon}{\gamma}$. La solution est de la forme : $\rho(t) = \rho(0)e^{-t/\tau_R}$.	
	Numériquement : $\tau_R = \frac{\varepsilon}{\gamma} = \frac{\varepsilon_0 \varepsilon_r}{\gamma} = 1.8 \cdot 10^{-10} \text{ s. Donc, après quelques } \tau_R \text{ on a :}$	
	ho pprox 0 : L'eau de mer est bien localement neutre.	
Q14	$\overrightarrow{rot}(\overrightarrow{rot}\vec{E}) = \overrightarrow{grad}(\overrightarrow{div}\vec{E}) - \vec{\Delta}\vec{E} = -\frac{\partial}{\partial t}(\overrightarrow{rot}\vec{B}) = -\frac{\partial}{\partial t}(\mu_0\vec{J} + \mu_0\varepsilon\frac{\partial\vec{E}}{\partial t})$	
015	$d'où: \vec{\Delta}\vec{E} - \mu_0 \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \gamma \frac{\partial \vec{E}}{\partial t}$	
Q15	On remplace dans l'équation ci-dessus l'expression du champ $\underline{\vec{E}}(M,t)$ donnée. On trouve : $-\underline{k}^2 + \mu_0 \varepsilon \omega^2 = \mu_0 \gamma j \omega$	
	D'où la relation de dispersion dans l'eau de mer : $\underline{k}^2 = +\mu_0 \varepsilon \omega^2 - \mu_0 \gamma j \omega$	
	et celle dans le vide, où $\gamma=0$ et $\varepsilon=\varepsilon_0$: $\underline{k}^2=\frac{\omega^2}{c^2}$	
Q16	Dans la situation de l'énoncé : $\underline{\vec{E}}(M,t) = \underline{E_0}e^{j(\omega t - \underline{k}z)}\vec{u}_x$	
	L'équation de Maxwell-Faraday donne : $-j\underline{k}\vec{u}_z \wedge \underline{\vec{E}} = -j\omega\underline{\vec{B}}$	
	D'où : $\underline{\vec{B}} = \frac{\underline{k}}{\omega} \underline{E}_0 e^{j(\omega t - \underline{k}z)} \vec{u}_y = \frac{(k_r - jk_l)}{\omega} \underline{E}_0 e^{j(\omega t - \underline{k}z)} \vec{u}_y$ La mayonna tamparalla du vectour de Poynting est :	
	La moyenne temporelle du vecteur de Poynting est : $\vec{E} \wedge \vec{B} = 1$	
	$<\vec{\Pi}> = <\frac{\vec{E} \wedge \vec{B}}{\mu_0}> = \frac{1}{2\mu_0} Re(\underline{\vec{E}} \wedge \underline{\vec{B}}^*)$	
	$<\vec{\Pi}>=\frac{1}{2\mu_0}Re\left[(k_r+jk_i)\left(\underline{E_0}\times\underline{E_0^*}\right)e^{-2k_iz}\vec{u}_z\right]$	
	$<\vec{\Pi}> = \frac{k_r}{2\mu_0(\epsilon)} \left \underline{E}_0 \right ^2 e^{-2k_i z} \vec{u}_z$	
	$2\mu_0\omega$	
Q17	$I = \ \langle \vec{\Pi} \rangle\ = \frac{k_r}{2\mu_0 \omega} \left \underline{E}_0 \right ^2 e^{-2k_i z} \text{ donc } \alpha = 2k_i$	
	$\frac{A_{dB}}{Z} = 20 \log(e) k_i = \frac{20}{\ln(10)} k_i$ Il y a bien proportionnalité entre $\frac{A_{dB}}{Z}$ et k_i .	
	2 m(10)	
Q18	La relation de dispersion est : $\underline{k}^2 = +\mu_0 \varepsilon \omega^2 - \mu_0 \gamma j \omega$	
	$\underline{k}^2 = -j\mu_0\gamma\omega\left(\frac{\mu_0\varepsilon\omega^2}{-j\mu_0\gamma\omega} + 1\right)$	
	Et si $\omega \ll \frac{\gamma}{s}$ alors : $\underline{k}^2 \cong -j\mu_0\gamma\omega$	
	ε – 51 07	
	Donc: $\underline{k} = \pm \left(\frac{1-j}{\sqrt{2}}\right) \sqrt{\mu_0 \gamma \omega} = \pm \frac{1-j}{\delta}$ avec: $\delta = \sqrt{\frac{2}{\mu_0 \gamma \omega}}$, c'est une profondeur de	
	pénétration des ondes électromagnétiques dans l'eau de mer.	
	Ici, $k_i = \frac{1}{\delta} = \sqrt{\frac{\mu_0 \gamma \omega}{2}}$ (propagation suivant z croissant) et l'atténuation par unité de	
	longueur:	
		ل



Elle varie donc en $\sqrt{\omega}$.

AN: $\delta(3 \text{ kHz}) = 4.6 \text{ m}$

 δ (30 kHz) = 1,5 m

Le sous-marin doit donc remonter vers la surface, tout en restant en dessous de celleci pour ne pas se faire repérer, et dérouler son antenne filaire sous la surface pour émettre des informations et en recevoir.